模块
示例
弹性搜索 BM25(Elastic Search BM25)

ElasticSearch BM25 #

This notebook goes over how to use a retriever that under the hood uses ElasticSearcha and BM25.

For more information on the details of BM25 see this blog post (opens in a new tab) .

from langchain.retrievers import ElasticSearchBM25Retriever

Create New Retriever #

elasticsearch_url="http://localhost:9200"
retriever = ElasticSearchBM25Retriever.create(elasticsearch_url, "langchain-index-4")
# Alternatively, you can load an existing index
# import elasticsearch
# elasticsearch_url="http://localhost:9200"
# retriever = ElasticSearchBM25Retriever(elasticsearch.Elasticsearch(elasticsearch_url), "langchain-index")

Add texts (if necessary) #

We can optionally add texts to the retriever (if they aren’t already in there)

retriever.add_texts(["foo", "bar", "world", "hello", "foo bar"])
['cbd4cb47-8d9f-4f34-b80e-ea871bc49856',
 'f3bd2e24-76d1-4f9b-826b-ec4c0e8c7365',
 '8631bfc8-7c12-48ee-ab56-8ad5f373676e',
 '8be8374c-3253-4d87-928d-d73550a2ecf0',
 'd79f457b-2842-4eab-ae10-77aa420b53d7']

Use Retriever #

We can now use the retriever!

result = retriever.get_relevant_documents("foo")
result
[Document(page_content='foo', metadata={}),
 Document(page_content='foo bar', metadata={})]