LLM Chain #
LLMChain
is perhaps one of the most popular ways of querying an LLM object. It formats the prompt template using the input key values provided (and also memory key values, if available), passes the formatted string to LLM and returns the LLM output. Below we show additional functionalities of
LLMChain
class.
from langchain import PromptTemplate, OpenAI, LLMChain
prompt_template = "What is a good name for a company that makes {product}?"
llm = OpenAI(temperature=0)
llm_chain = LLMChain(
llm=llm,
prompt=PromptTemplate.from_template(prompt_template)
)
llm_chain("colorful socks")
{'product': 'colorful socks', 'text': '\n\nSocktastic!'}
Additional ways of running LLM Chain #
Aside from
__call__
and
run
methods shared by all
Chain
object (see
Getting Started
to learn more),
LLMChain
offers a few more ways of calling the chain logic:
applyallows you run the chain against a list of inputs:
input_list = [
{"product": "socks"},
{"product": "computer"},
{"product": "shoes"}
]
llm_chain.apply(input_list)
[{'text': '\n\nSocktastic!'},
{'text': '\n\nTechCore Solutions.'},
{'text': '\n\nFootwear Factory.'}]
generateis similar toapply, except it return anLLMResultinstead of string.LLMResultoften contains useful generation such as token usages and finish reason.
llm_chain.generate(input_list)
LLMResult(generations=[[Generation(text='\n\nSocktastic!', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text='\n\nTechCore Solutions.', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text='\n\nFootwear Factory.', generation_info={'finish_reason': 'stop', 'logprobs': None})]], llm_output={'token_usage': {'prompt_tokens': 36, 'total_tokens': 55, 'completion_tokens': 19}, 'model_name': 'text-davinci-003'})
-
predictis similar torunmethod except in 2 ways:- Input key is specified as keyword argument instead of a Python dict
- It supports multiple input keys.
# Single input example
llm_chain.predict(product="colorful socks")
'\n\nSocktastic!'
# Multiple inputs example
template = """Tell me a {adjective} joke about {subject}."""
prompt = PromptTemplate(template=template, input_variables=["adjective", "subject"])
llm_chain = LLMChain(prompt=prompt, llm=OpenAI(temperature=0))
llm_chain.predict(adjective="sad", subject="ducks")
'\n\nQ: What did the duck say when his friend died?\nA: Quack, quack, goodbye.'
Parsing the outputs #
By default,
LLMChain
does not parse the output even if the underlying
prompt
object has an output parser. If you would like to apply that output parser on the LLM output, use
predict_and_parse
instead of
predict
and
apply_and_parse
instead of
apply
.
With
predict
:
from langchain.output_parsers import CommaSeparatedListOutputParser
output_parser = CommaSeparatedListOutputParser()
template = """List all the colors in a rainbow"""
prompt = PromptTemplate(template=template, input_variables=[], output_parser=output_parser)
llm_chain = LLMChain(prompt=prompt, llm=llm)
llm_chain.predict()
'\n\nRed, orange, yellow, green, blue, indigo, violet'
With
predict_and_parser
:
llm_chain.predict_and_parse()
['Red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet']
Initialize from string #
You can also construct an LLMChain from a string template directly.
template = """Tell me a {adjective} joke about {subject}."""
llm_chain = LLMChain.from_string(llm=llm, template=template)
llm_chain.predict(adjective="sad", subject="ducks")
'\n\nQ: What did the duck say when his friend died?\nA: Quack, quack, goodbye.'